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1 Fourier Expansion of Boolean Functions

1.1 Boolean functions

Definition 1.1. A boolean function is a function f:{0,1}" — {0, 1}.

We can think of this as representing what certain outputs are if we give a certain input
to a system. For example,.a boolean function can represent the output of a circuit on
certain inputs. In pseudoandomness, we can think of trying to fool this function with
psudorandom bits. In social choice, we can think of this as a voting rule which turns
individual votes into a joint decision of the group. We can encode a graph G = (V, E) as
a boolean string as a ('gl)—length string; then the function can specify all graphs with a
certain property (e.g. connectedness).

In the boolean domain, we can think of true as 1 and false as 0. This encodes truth
values via the finite field Fo. We can also encode via R by mapping 1 — —1 and 0 +— 1
(i.e. b+ (—1)®). In this case, we can think of a boolean function as f : {#1}" — {£1}.

Example 1.1. For n = 3, we can think of a boolean function as specifying +1 on each of
the vertices of a cube with vertices (+1,+1,£1).

1.2 Expressing boolean functions as polynomials

Example 1.2. The function maxsy : {£1}2 — {£1} is defined by

maxy(—1,—1

) =
maxg(—1, ): 1
maxy(1l,—1) =1
maxy(1,1) = 1.



We can also specify the values via a truth table:

1 X9 ‘ maxa (1, T2)
-1 -1 —1

-1 1
1 -1
1 1

—_ = =

We can also think of this function as a polynomial:

1 1
maxa(x1,x2) = 3 + 5561 + 5362 — 5961302

Example 1.3. Consider the majority vote function MAJs(z1,z2,23). This can be ex-
pressed by the polynomial

1 1 1 1
MAJ3($1,x27x3) = 51’1 + 51’2 + 5.7}3 — 51’1:62%3.

We will now see how to generally encode boolean functions as polynomials.

Theorem 1.1 (Fundamental theorem of boolean functions). Ewvery boolean function f :
{0,1}™ — {0,1} can be uniquely represented as a multilinear polynomial

f(wly---7$n>— Z CSHxi.

SC{l...n} i€S

For notation, we will call [n] = {1,...,} 2% = [[;cg z; and ¢, = F(S). To see how this
works, let’s look at a few examples.

Example 1.4. To encode maxs as a polynomial, we want to interpolate between the points
we do know. One way to specify this is to add polynomials which evaluate to 0 on all but
1 point:

maxa (1, T2) = <1+2x1) <1+2x2> S(+1) + <1 _2361) <1z$2> - (+1)
(52 (59 e (52 (52)

Example 1.5. To encode MAJs3, we would use

1 1 1
MAJ3=< +x1>< +x2>< +x3) - (+1) + 7 other terms.

2 2 2



Proof. We can always write

fe) = Z f(a)<1+;1x1) <1+§Lgx2),..(1+3”m”>.

ac{£1}n

For uniqueness, observe that we can think of the monomials (or characters) xgs(x) :=
[I;cs zi as functions that only care about bits in the set S. If we think of +1 as true and
—1 as false, xg(z) is the “x or” function of the bits in S. So what we are saying is that

f@)=>" F(S)- xs(@)
SC[n]

is a linear combination of the characters yg. So we want to show that {xg} is a basis of
V', the vector space of all functions f : {£1}" — R. We have shown that these character
functions span V. We can think of the space V as R?" be specifying the outputs on each
input. This has dimension 2", which is the same as the number of character functions
we have. So this must be a basis, nd every vector is a unique linear combination of

{xs}tscm- O

Remark 1.1. It doesn’t matter that the range of f is {£1}. This procedure works the
same if the function is real-valued, in general.

1.3 Fundamental theorem via inner products of characters

Now we will give another proof of this theorem.
Definition 1.2. The inner product of f,g: {+1}" - R is

F9) =5 O o)

ze{x1}"
Ex g1y [f(X)g(X)],

where we mean that X is uniform on {+1}".

Some sources will use a different normalization factor.

If f,g:{£1}" — {£1}, then
{f:9) = Pxgzyn (f(X) = 9(X)) = Pxopay (F(X) # 9(X))
=1-2Px 113 (f(X) = g(X)).
We can think of Py 413 (f(X) = g(X)) as a distance between two functions.

Proposition 1.1. The characters are orthogonal to one another.



Lemma 1.1.
xs(@)xr(s) = xsar(z).

Proof.

xs(@)xr(s) = Hl‘z IE2

iesnT JESAT

= xsar (). -
Lemma 1.2. If S # 9, Ex.i41)»[xs(X)] = 0.
Proof.
Ex[xs(X)] = Ex~{z1jn [H Xi]

€S
Since the bits are independent,

= [ EX)]

i€S
=0. O

Now we can prove the proposition.

Proof. Using the two lemmas,

1 §S=T

<XS>XT>:{O S#T,

where for S # T,

(xs, x7) = Elxs(X)xr(X)] = E[xsar(X)] = 0. O

So we have furnished a more non-constructive proof of the fundamental theorem.

Corollary 1.1. The characters xs form an orthonormal basis for the space V.= {f :
{£1}" —» R}.



1.4 Fourier inversion formula, Plancherel’s identity, and Parseval’s iden-
tity

Theorem 1.2 (Inversion formula).
F(S) = (f,xs)-

Proof. We can replace f by its Fourier expansion:

(fixs) = < > AT XT,XS>

TC[n]

= > AT xr,xs)

TC[n]
= /(5)
by the orthogonality of the character functions. O

This says that the coefficients capture the correlation of our function with all the
character functions.

Theorem 1.3 (Plancherel’s identity).

9= F(9)3(s)

SCln]

Proof.

/\

= (> f( XS,Z§(T)XT>
S T

(9)g(T){xs» xT)

~

(S)g(9s) - 1. O

I
=[] 4

This says that the Fourier transform preserves the inner product. Here is the case
where f = g.

Theorem 1.4 (Parseval’s identity). Let ||f||3 = (f, f) = >_SCin] f(S)Q, so that || f|l2 =

VEXx[f(X)?]. If f is boolean, then | f|2 = 1.

Next time, we will learn about property testing, where we can only test the output of
f:Fy — Fy. We will see how we can check if f is linear.
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