
Computer Science 294 Lecture 1 Notes

Daniel Raban

January 17, 2023

1 Fourier Expansion of Boolean Functions

1.1 Boolean functions

Definition 1.1. A boolean function is a function f : {0, 1}n → {0, 1}.

We can think of this as representing what certain outputs are if we give a certain input
to a system. For example,.a boolean function can represent the output of a circuit on
certain inputs. In pseudoandomness, we can think of trying to fool this function with
psudorandom bits. In social choice, we can think of this as a voting rule which turns
individual votes into a joint decision of the group. We can encode a graph G = (V,E) as
a boolean string as a

(|V |
2

)
-length string; then the function can specify all graphs with a

certain property (e.g. connectedness).
In the boolean domain, we can think of true as 1 and false as 0. This encodes truth

values via the finite field F2. We can also encode via R by mapping 1 7→ −1 and 0 7→ 1
(i.e. b 7→ (−1)b). In this case, we can think of a boolean function as f : {±1}n → {±1}.

Example 1.1. For n = 3, we can think of a boolean function as specifying ±1 on each of
the vertices of a cube with vertices (±1,±1,±1).

1.2 Expressing boolean functions as polynomials

Example 1.2. The function max2 : {±1}2 → {±1} is defined by

max2(−1,−1) = −1

max2(−1, 1) = 1

max2(1,−1) = 1

max2(1, 1) = 1.

1

We can also specify the values via a truth table:

x1 x2 max2(x1, x2)

−1 −1 −1
−1 1 1
1 −1 1
1 1 1

We can also think of this function as a polynomial:

max2(x1, x2) =
1

2
+

1

2
x1 +

1

2
x2 −

1

2
x1x2

Example 1.3. Consider the majority vote function MAJ3(x1, x2, x3). This can be ex-
pressed by the polynomial

MAJ3(x1, x2, x3) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3.

We will now see how to generally encode boolean functions as polynomials.

Theorem 1.1 (Fundamental theorem of boolean functions). Every boolean function f :
{0, 1}n → {0, 1} can be uniquely represented as a multilinear polynomial

f(x1, . . . , xn) =
∑

S⊆{1....,n}

cs
∏
i∈S

xi.

For notation, we will call [n] = {1, . . . , } xS =
∏

i∈S xi and cs = f̂(S). To see how this
works, let’s look at a few examples.

Example 1.4. To encode max2 as a polynomial, we want to interpolate between the points
we do know. One way to specify this is to add polynomials which evaluate to 0 on all but
1 point:

max2(x1, x2) =

(
1 + x1

2

)(
1 + x2

2

)
· (+1) +

(
1− x1

2

)(
1 + x2

2

)
· (+1)

+

(
1 + x1

2

)(
1− x2

2

)
· (+1) +

(
1− x1

2

)(
1− x2

2

)
· (−1).

Example 1.5. To encode MAJ3, we would use

MAJ3 =

(
1 + x1

2

)(
1 + x2

2

)(
1 + x3

2

)
· (+1) + 7 other terms.

2

Proof. We can always write

f(x) =
∑

a∈{±1}n
f(a)

(
1 + a1x1

2

)(
1 + a2x2

2

)
· · ·
(

1 + anxn
2

)
.

For uniqueness, observe that we can think of the monomials (or characters) χS(x) :=∏
i∈S xi as functions that only care about bits in the set S. If we think of +1 as true and
−1 as false, χS(x) is the “x or” function of the bits in S. So what we are saying is that

f(x) =
∑
S⊆[n]

f̂(S) · χS(x)

is a linear combination of the characters χS . So we want to show that {χS} is a basis of
V , the vector space of all functions f : {±1}n → R. We have shown that these character
functions span V . We can think of the space V as R2n be specifying the outputs on each
input. This has dimension 2n, which is the same as the number of character functions
we have. So this must be a basis, nd every vector is a unique linear combination of
{χS}S⊆[n].

Remark 1.1. It doesn’t matter that the range of f is {±1}. This procedure works the
same if the function is real-valued, in general.

1.3 Fundamental theorem via inner products of characters

Now we will give another proof of this theorem.

Definition 1.2. The inner product of f, g : {±1}n → R is

〈f, g〉 :=
1

2n

∑
x∈{±1}n

f(x)g(x)

EX∼{±1}n [f(X)g(X)],

where we mean that X is uniform on {±1}n.

Some sources will use a different normalization factor.
If f, g : {±1}n → {±1}, then

〈f, g〉 = PX∼{±1}n(f(X) = g(X))− PX∼{±1}n(f(X) 6= g(X))

= 1− 2PX∼{±1}n(f(X) = g(X)).

We can think of PX∼{±1}n(f(X) = g(X)) as a distance between two functions.

Proposition 1.1. The characters are orthogonal to one another.

3

Lemma 1.1.
χS(x)χT (s) = χS4T (x).

Proof.

χS(x)χT (s) =
∏
i∈S

xi
∏
j∈T

xj

=
∏

i∈S∩T
x2i ·

∏
j∈S4T

xj

= χS4T (x).

Lemma 1.2. If S 6= ∅, EX∼{±1}n [χS(X)] = 0.

Proof.

EX [χS(X)] = EX∼{±1}n

[∏
i∈S

Xi

]
Since the bits are independent,

=
∏
i∈S

E[Xi]

= 0.

Now we can prove the proposition.

Proof. Using the two lemmas,

〈χS , χT 〉 =

{
1 S = T

0 S 6= T,

where for S 6= T ,

〈χS , χT 〉 = E[χS(X)χT (X)] = E[χS4T (X)] = 0.

So we have furnished a more non-constructive proof of the fundamental theorem.

Corollary 1.1. The characters χS form an orthonormal basis for the space V = {f :
{±1}n → R}.

4

1.4 Fourier inversion formula, Plancherel’s identity, and Parseval’s iden-
tity

Theorem 1.2 (Inversion formula).

f̂(S) = 〈f, χS〉.

Proof. We can replace f by its Fourier expansion:

〈f, χS〉 =

〈∑
T⊆[n]

f̂(T)χT , χS

〉

=
∑
T⊆[n]

f̂(T)〈χT , χS〉

= f̂(S)

by the orthogonality of the character functions.

This says that the coefficients capture the correlation of our function with all the
character functions.

Theorem 1.3 (Plancherel’s identity).

〈f, g〉 =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof.

〈f, g〉 =

〈∑
S

f̂(T)χS ,
∑
T

ĝ(T)χT

〉
=
∑
S,T

f̂(S)ĝ(T)〈χS , χT 〉

=
∑
S

= f̂(S)ĝ(S) · 1.

This says that the Fourier transform preserves the inner product. Here is the case
where f = g.

Theorem 1.4 (Parseval’s identity). Let ‖f‖22 = 〈f, f〉 =
∑

S⊆[n] f̂(S)2, so that ‖f‖2 =√
EX [f(X)2]. If f is boolean, then ‖f‖2 = 1.

Next time, we will learn about property testing, where we can only test the output of
f : Fn

2 → F2. We will see how we can check if f is linear.

5

	Fourier Expansion of Boolean Functions
	Boolean functions
	Expressing boolean functions as polynomials
	Fundamental theorem via inner products of characters
	Fourier inversion formula, Plancherel's identity, and Parseval's identity

