Computer Science 294 Lecture 1 Notes

Daniel Raban

January 17, 2023

1 Fourier Expansion of Boolean Functions

1.1 Boolean functions

Definition 1.1. A boolean function is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
We can think of this as representing what certain outputs are if we give a certain input to a system. For example,.a boolean function can represent the output of a circuit on certain inputs. In pseudoandomness, we can think of trying to fool this function with psudorandom bits. In social choice, we can think of this as a voting rule which turns individual votes into a joint decision of the group. We can encode a graph $G=(V, E)$ as a boolean string as a $\binom{|V|}{2}$-length string; then the function can specify all graphs with a certain property (e.g. connectedness).

In the boolean domain, we can think of true as 1 and false as 0 . This encodes truth values via the finite field \mathbb{F}_{2}. We can also encode via \mathbb{R} by mapping $1 \mapsto-1$ and $0 \mapsto 1$ (i.e. $b \mapsto(-1)^{b}$). In this case, we can think of a boolean function as $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$.

Example 1.1. For $n=3$, we can think of a boolean function as specifying ± 1 on each of the vertices of a cube with vertices $(\pm 1, \pm 1, \pm 1)$.

1.2 Expressing boolean functions as polynomials

Example 1.2. The function $\max _{2}:\{ \pm 1\}^{2} \rightarrow\{ \pm 1\}$ is defined by

$$
\begin{aligned}
\max _{2}(-1,-1) & =-1 \\
\max _{2}(-1,1) & =1 \\
\max _{2}(1,-1) & =1 \\
\max _{2}(1,1) & =1
\end{aligned}
$$

We can also specify the values via a truth table:

x_{1}	x_{2}	$\max _{2}\left(x_{1}, x_{2}\right)$
-1	-1	-1
-1	1	1
1	-1	1
1	1	1

We can also think of this function as a polynomial:

$$
\max _{2}\left(x_{1}, x_{2}\right)=\frac{1}{2}+\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{1} x_{2}
$$

Example 1.3. Consider the majority vote function $\operatorname{MAJ}_{3}\left(x_{1}, x_{2}, x_{3}\right)$. This can be expressed by the polynomial

$$
\operatorname{MAJ}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3} .
$$

We will now see how to generally encode boolean functions as polynomials.
Theorem 1.1 (Fundamental theorem of boolean functions). Every boolean function f : $\{0,1\}^{n} \rightarrow\{0,1\}$ can be uniquely represented as a multilinear polynomial

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \subseteq\{1 \ldots, n\}} c_{S} \prod_{i \in S} x_{i} .
$$

For notation, we will call $[n]=\{1, \ldots,\} x^{S}=\prod_{i \in S} x_{i}$ and $c_{s}=\widehat{f}(S)$. To see how this works, let's look at a few examples.

Example 1.4. To encode $\max _{2}$ as a polynomial, we want to interpolate between the points we do know. One way to specify this is to add polynomials which evaluate to 0 on all but 1 point:

$$
\begin{aligned}
\max _{2}\left(x_{1}, x_{2}\right)= & \left(\frac{1+x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right) \cdot(+1)+\left(\frac{1-x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right) \cdot(+1) \\
& +\left(\frac{1+x_{1}}{2}\right)\left(\frac{1-x_{2}}{2}\right) \cdot(+1)+\left(\frac{1-x_{1}}{2}\right)\left(\frac{1-x_{2}}{2}\right) \cdot(-1) .
\end{aligned}
$$

Example 1.5. To encode MAJ_{3}, we would use

$$
\mathrm{MAJ}_{3}=\left(\frac{1+x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right)\left(\frac{1+x_{3}}{2}\right) \cdot(+1)+7 \text { other terms. }
$$

Proof. We can always write

$$
f(x)=\sum_{a \in\{ \pm 1\}^{n}} f(a)\left(\frac{1+a_{1} x_{1}}{2}\right)\left(\frac{1+a_{2} x_{2}}{2}\right) \cdots\left(\frac{1+a_{n} x_{n}}{2}\right) .
$$

For uniqueness, observe that we can think of the monomials (or characters) $\chi_{S}(x):=$ $\prod_{i \in S} x_{i}$ as functions that only care about bits in the set S. If we think of +1 as true and -1 as false, $\chi_{S}(x)$ is the "x or" function of the bits in S. So what we are saying is that

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \cdot \chi_{S}(x)
$$

is a linear combination of the characters χ_{S}. So we want to show that $\left\{\chi_{S}\right\}$ is a basis of V, the vector space of all functions $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$. We have shown that these character functions span V. We can think of the space V as $\mathbb{R}^{2^{n}}$ be specifying the outputs on each input. This has dimension 2^{n}, which is the same as the number of character functions we have. So this must be a basis, nd every vector is a unique linear combination of $\left\{\chi_{S}\right\}_{S \subseteq[n]}$.

Remark 1.1. It doesn't matter that the range of f is $\{ \pm 1\}$. This procedure works the same if the function is real-valued, in general.

1.3 Fundamental theorem via inner products of characters

Now we will give another proof of this theorem.
Definition 1.2. The inner product of $f, g:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ is

$$
\begin{aligned}
\langle f, g\rangle & :=\frac{1}{2^{n}} \sum_{x \in\{ \pm 1\}^{n}} f(x) g(x) \\
& \mathbb{E}_{X \sim\{ \pm 1\}^{n}}[f(X) g(X)],
\end{aligned}
$$

where we mean that X is uniform on $\{ \pm 1\}^{n}$.
Some sources will use a different normalization factor.
If $f, g:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, then

$$
\begin{aligned}
\langle f, g\rangle & =\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(f(X)=g(X))-\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(f(X) \neq g(X)) \\
& =1-2 \mathbb{P}_{X \sim\{ \pm 1\}^{n}}(f(X)=g(X)) .
\end{aligned}
$$

We can think of $\mathbb{P}_{X \sim\{ \pm 1\}^{n}}(f(X)=g(X))$ as a distance between two functions.
Proposition 1.1. The characters are orthogonal to one another.

Lemma 1.1.

$$
\chi_{S}(x) \chi_{T}(s)=\chi_{S \triangle T}(x) .
$$

Proof.

$$
\begin{aligned}
\chi_{S}(x) \chi_{T}(s) & =\prod_{i \in S} x_{i} \prod_{j \in T} x_{j} \\
& =\prod_{i \in S \cap T} x_{i}^{2} \cdot \prod_{j \in S \Delta T} x_{j} \\
& =\chi_{S \Delta T}(x) .
\end{aligned}
$$

Lemma 1.2. If $S \neq \varnothing, \mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[\chi_{S}(X)\right]=0$.
Proof.

$$
\mathbb{E}_{X}\left[\chi_{S}(X)\right]=\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[\prod_{i \in S} X_{i}\right]
$$

Since the bits are independent,

$$
\begin{aligned}
& =\prod_{i \in S} \mathbb{E}\left[X_{i}\right] \\
& =0 .
\end{aligned}
$$

Now we can prove the proposition.
Proof. Using the two lemmas,

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle= \begin{cases}1 & S=T \\ 0 & S \neq T,\end{cases}
$$

where for $S \neq T$,

$$
\left\langle\chi_{S}, \chi_{T}\right\rangle=\mathbb{E}\left[\chi_{S}(X) \chi_{T}(X)\right]=\mathbb{E}\left[\chi_{S \Delta T}(X)\right]=0 .
$$

So we have furnished a more non-constructive proof of the fundamental theorem.
Corollary 1.1. The characters χ_{S} form an orthonormal basis for the space $V=\{f$: $\left.\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$.

1.4 Fourier inversion formula, Plancherel's identity, and Parseval's identity

Theorem 1.2 (Inversion formula).

$$
\widehat{f}(S)=\left\langle f, \chi_{S}\right\rangle
$$

Proof. We can replace f by its Fourier expansion:

$$
\begin{aligned}
\left\langle f, \chi_{S}\right\rangle & =\left\langle\sum_{T \subseteq[n]} \widehat{f}(T) \chi_{T}, \chi_{S}\right\rangle \\
& =\sum_{T \subseteq[n]} \widehat{f}(T)\left\langle\chi_{T}, \chi_{S}\right\rangle \\
& =\widehat{f}(S)
\end{aligned}
$$

by the orthogonality of the character functions.
This says that the coefficients capture the correlation of our function with all the character functions.

Theorem 1.3 (Plancherel's identity).

$$
\langle f, g\rangle=\sum_{S \subseteq[n]} \widehat{f}(S) \widehat{g}(S) .
$$

Proof.

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\sum_{S} \widehat{f}(T) \chi_{S}, \sum_{T} \widehat{g}(T) \chi_{T}\right\rangle \\
& =\sum_{S, T} \widehat{f}(S) \widehat{g}(T)\left\langle\chi_{S}, \chi_{T}\right\rangle \\
& =\sum_{S}=\widehat{f}(S) \widehat{g}(S) \cdot 1
\end{aligned}
$$

This says that the Fourier transform preserves the inner product. Here is the case where $f=g$.

Theorem 1.4 (Parseval's identity). Let $\|f\|_{2}^{2}=\langle f, f\rangle=\sum_{S \subseteq[n]} \widehat{f}(S)^{2}$, so that $\|f\|_{2}=$ $\sqrt{\mathbb{E}_{X}\left[f(X)^{2}\right]}$. If f is boolean, then $\|f\|_{2}=1$.

Next time, we will learn about property testing, where we can only test the output of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$. We will see how we can check if f is linear.

